UC Davis, STA 250 Homework 1 Instructor: Spencer Frei

Version 1.1, released Friday, February 2, 2024 (added hint to Problem 2.1)

Problem 1

In this problem, we consider a two-layer leaky ReLU network trained by gradient descent on the firstlayer weights. Let $m \in \mathbb{N}$, $\phi(t) = \max(t, \gamma t)$ for $\gamma \in (0, 1]$, let $W \in \mathbb{R}^{m \times d}$ have rows w_j^{\top} , and let $a_j \in \{\pm 1/\sqrt{m}\}$ (the a_j can take arbitrary values in this set). Consider

$$f(x;W) := \sum_{j=1}^{m} a_j \phi(\langle w_j, x \rangle).$$

Let us assume that $(x_i, y_i) \in \mathbb{R}^d \times \{\pm 1\}$ are such that $||x_i|| \leq 1$ for each *i*, and there exists $v \in \mathbb{R}^d$ such that $y_i \langle v, x_i \rangle \geq 1$ for all *i*. Let

$$\widehat{L}(W) := \frac{1}{n} \sum_{i=1}^{n} \ell(y_i f(x_i; W)).$$

Let $\alpha > 0$ be a step size, and consider gradient descent on the logistic loss $\ell(t) = \log(1 + \exp(-t))$,

$$W^{(t+1)} = W^{(t)} - \alpha \nabla \widehat{L}(W^{(t)}).$$

In this problem, we will show that although $\widehat{L}(W)$ is not smooth, we can still show convergence of gradient descent using what is known as a "Perceptron-style" proof. This is so-named because of its similarity to the proof of convergence of the Perceptron algorithm for learning halfspaces with linear classifiers (see, e.g., Theorem 9.1 of Shalev-Shwartz and Ben-David's book.)

- 1. Show that $\widehat{L}(W)$ is not necessarily β -smooth.
- 2. Show that there exists $V \in \mathbb{R}^{m \times d}$ satisfying $||V||_F = 1$ and c > 0 such that for any training point (x_i, y_i) and for any $W \in \mathbb{R}^{m \times d}$, we have

$$y_i \langle \nabla f(x_i; W), V \rangle \ge c$$

Hint: it suffices to take a matrix V where every row is a multiple of a single vector.

3. Let $H_t := \langle W^{(t)}, V \rangle$ be the correlation between the weights found by G.D. and the matrix V from the previous part of the problem, and let

$$\widehat{G}(W) := \frac{1}{n} \sum_{i=1}^n -\ell'(y_i f(x_i; W)).$$

Show that there exists c' > 0, independent of α , such that for any $t \ge 0$,

$$H_{t+1} - H_t \ge c' \alpha \widehat{G}(W^{(t)}).$$

Hint: use that ℓ *is Lipschitz and decreasing.*

- 4. Let $F_t := ||W^{(t)}||_F$. Show that $F_{t+1}^2 \le F_t^2 + 2\alpha + \alpha^2$ for any $t \ge 0$. *Hint: use that* ϕ *is 1-homogeneous.*
- 5. Use the above to conclude that for any $\varepsilon > 0$, there exists a finite $T = T(\varepsilon, m, \gamma, \alpha)$ for which $\widehat{G}(W^{(T)}) \leq \varepsilon$.

Hint: Consider how quickly the quantity $H_t^2 := \langle W^{(t)}, V \rangle^2$ grows as t increases, and use Cauchy–Schwarz.

6. Use this to conclude that for any $\varepsilon > 0$, there exists a finite $T = T(\varepsilon, m, \gamma, \alpha)$ for which $\widehat{L}(W^{(T)}) \le \varepsilon$. What are the conditions on α under which this result holds?

Problem 2

Let $(x_i, y_i) \in \mathbb{R}^d \times \{\pm 1\}$ for $i = 1, \ldots, n$; call $S = \{(x_i, y_i)\}_{i=1}^n$. Let $R_{\min}^2 := \min_i ||x_i||^2$ and $R_{\max}^2 := \max_i ||x_i||^2$ and $R^2 := R_{\max}^2/R_{\min}^2$, and assume $R_{\min} > 0$. Let us call the training dataset *p*-orthogonal if,

$$R_{\min}^2 \ge pR^2 n \max_{i \ne j} |\langle x_i, x_j \rangle|.$$

In particular, if the examples x_i are exactly orthogonal, then S is p-orthogonal for every p > 0.

Recall the definition of the ℓ_2 -max margin solution (MM) and the ℓ_2 -minimum norm interpolator (MNI)

$$w_{\mathsf{MM}} := \operatorname{argmin}\{\|w\|_2^2 : w \in \mathbb{R}^d, \, y_i \langle w, x_i \rangle \ge 1 \text{ for all } i = 1, \dots, n\},\\ w_{\mathsf{MNI}} := \operatorname{argmin}\{\|w\|_2^2 : w \in \mathbb{R}^d, \, \langle w, x_i \rangle = y_i \text{ for all } i = 1, \dots, n\}.$$

1. Suppose that $x_i \stackrel{\text{i.i.d.}}{\sim} \mathsf{N}(0, I_d)$. For $\delta \in (0, 1/2)$, state sufficient conditions under which we can guarantee that the training dataset S is p-orthogonal with probability at least $1 - \delta$.

Hint: First show upper and lower bounds on the norm squared of the Gaussian, i.e. find a, b (depending on δ) such that w.p. at least $1 - \delta$, $||x_i||^2 \in [a, b]$ for all i. Then consider a fixed $i \in [n]$, condition on x_i , and use the definition of the Gaussian to bound $\langle x_i, x_j \rangle$ for each j = 1, ..., n with $j \neq i$. Then take a union bound over all i.

2. Show that if S is p-orthogonal for some $p \ge 3$, then w_{MM} exists and $w_{MM} = w_{MNI}$. What does this imply about training on the logistic loss vs. training on the squared loss when the training data is p-orthogonal?

- 3. Show that there exist training datasets S for which $w_{MNI} \neq w_{MM}$.
- 4. Show that if S is p-orthogonal for some $p \ge 3$, then there exist $s_i > 0$ such that $w_{MM} = \sum_{i=1}^n s_i y_i x_i$ and the s_i satisfy $\max_{i,j} \frac{s_i}{s_j} \le R^2 \left(1 + \frac{1}{\Omega(pR^2)}\right)$. In particular, if p is large and the norms of the examples are close to each other, the max-margin classifier is approximately proportional to the uniform average of the training data, $\sum_{i=1}^n y_i x_i$.

Problem 3

Let us again consider the training of a two-layer leaky ReLU network f(x; W) by gradient descent on the logistic loss training only the first-layer weights (the setting of Problem 1). We shall show a partial result concerning the implicit bias of gradient descent towards rank minimization in neural networks when the training data is *p*-orthogonal. Towards this end, for a matrix $M \in \mathbb{R}^{m \times d}$, let us recall the definition of the Frobenius norm and spectral norm:

$$||M||_F^2 := \sum_{i,j} ([M]_{i,j})^2, \quad ||M||_2 := \sup_{||v||_2=1} ||Mv||_2.$$

We define the *stable rank* of M as

$$\mathsf{StableRank}(M) := \frac{\|M\|_F^2}{\|M\|_2^2}.$$

The stable rank is a continuous version of the rank of a matrix. Consider, e.g., $M \in \mathbb{R}^{d \times d}$ with $M = \text{diag}(1, \ldots, 1, \varepsilon)$ for $\varepsilon \in [0, 1]$. For any $\varepsilon > 0$, the rank of M is d, while for $\varepsilon = 0$ the rank abruptly changes to d - 1. On the other hand, StableRank(M) smoothly changes from d - 1 to d as ε goes from 0 to 1. Similarly, if $M = \text{diag}(1, \exp(-d), \ldots, \exp(-d))$, then the rank of M is equal to d for all d, while StableRank $(M) = 1 + (d - 1) \exp(-2d) = 1 + o_d(1)$.

1. Suppose that $[W^{(0)}]_{i,j} \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$ for some $\sigma > 0$. A classical result in random matrix theory states the following.¹ For some c > 0 and for any $t \ge 0$,

$$\mathbb{P}(\sigma^{-1} \| W^{(0)} \|_2 \ge \sqrt{m} + \sqrt{d} + t) \le 2 \exp(-ct^2).$$

Use this to show that with probability at least $1 - o_d(1)$, StableRank $(W^{(0)}) \ge \Omega(\min(m, d))$.

2. Suppose that the training data is *p*-orthogonal, and consider $W^{(1)} = W^{(0)} - \alpha \nabla \hat{L}(W^{(0)})$ as in Problem 1, where $[W^{(0)}]_{i,j} \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$. Show that if *p* is sufficiently large, then there exists some $\underline{\alpha}, \overline{\alpha} > 0, \overline{\sigma} > 0$, such that for $\underline{\alpha} \le \alpha \le \overline{\alpha}$ and $0 < \sigma \le \overline{\sigma}$, it holds that StableRank $(W^{(1)}) \le C$ for some universal constant *C* which is independent of *m* and *d*. In particular, gradient descent reduces the stable rank of the weight matrix from order $\Omega(\min(m, d))$ to constant order in one step.

Hint 1: You need to prove an upper bound on $||W^{(1)}||_F^2$ and a lower bound on $||W^{(1)}||_2^2$, and show they are within a constant of one another. The proof of both bounds should explicitly use the fact that the training data is p-orthogonal; you may find some of the proof ideas from Problem 1 helpful.

Hint 2: By taking σ sufficiently small, the approximation $W^{(1)} \approx -\alpha \nabla \widehat{L}(W^{(0)})$ holds; see what happens if you treat this as an equality.

¹See, e.g., Corollary 7.3.3 of Vershynin's High-Dimensional Probability.

3. Consider training a two-layer leaky ReLU network, with biases, on the cross-entropy loss with $\gamma = 0.05$ and m = 150 neurons for the MNIST classification task. (Unlike in Problem 1 and the above subproblem, we are now considering training on both layers and with bias terms.) Initialize the network with i.i.d. mean zero Gaussians with standard deviation $\sigma = 0.02$. Find a suitable learning rate such that you can produce a network which achieves less than 5% training error within 20 minutes of training on your laptop/Google Colab; call $W^{(T)}$ the weights found at the end. Now examine what happens when you train with the same learning rate and for the same number of steps T as you vary σ so that $\sigma \in \{0.0002, 0.002, 0.02, 0.2, 2\}$.

Produce a plot with the following characteristics:

- σ on the x-axis,
- For each $t \in \{1, T/10, T/5, T/2, T\}$, have a curve with values $\frac{\text{StableRank}(W^{(t)})}{\text{StableRank}(W^{(0)})}$ as a function of σ , i.e. the relative rank of the weights at time t vs. at time 0. In particular, there should be 5 separate curves, with different colors and line styles, for each of the times $t \in \{1, T/10, T/5, T/2, T\}$, so each curve corresponds to the relative rank decrease as a function of the number of gradient descent steps. Are there any noteworthy findings?