
UC Davis, STA 250
Homework 1

Instructor: Spencer Frei

Version 1.1, released Friday, February 2, 2024 (added hint to Problem 2.1)

Problem 1

In this problem, we consider a two-layer leaky ReLU network trained by gradient descent on the first-
layer weights. Let m ∈ N, φ(t) = max(t, γt) for γ ∈ (0, 1], let W ∈ Rm×d have rows w>j , and let
aj ∈ {±1/

√
m} (the aj can take arbitrary values in this set). Consider

f(x;W ) :=
m∑
j=1

ajφ(〈wj , x〉).

Let us assume that (xi, yi) ∈ Rd × {±1} are such that ‖xi‖ ≤ 1 for each i, and there exists v ∈ Rd such
that yi〈v, xi〉 ≥ 1 for all i. Let

L̂(W ) :=
1

n

n∑
i=1

`(yif(xi;W )).

Let α > 0 be a step size, and consider gradient descent on the logistic loss `(t) = log(1 + exp(−t)),

W (t+1) = W (t) − α∇L̂(W (t)).

In this problem, we will show that although L̂(W ) is not smooth, we can still show convergence of gradient
descent using what is known as a “Perceptron-style” proof. This is so-named because of its similarity to the
proof of convergence of the Perceptron algorithm for learning halfspaces with linear classifiers (see, e.g.,
Theorem 9.1 of Shalev-Shwartz and Ben-David’s book.)

1. Show that L̂(W ) is not necessarily β-smooth.

2. Show that there exists V ∈ Rm×d satisfying ‖V ‖F = 1 and c > 0 such that for any training point
(xi, yi) and for any W ∈ Rm×d, we have

yi〈∇f(xi;W ), V 〉 ≥ c.

Hint: it suffices to take a matrix V where every row is a multiple of a single vector.
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3. Let Ht := 〈W (t), V 〉 be the correlation between the weights found by G.D. and the matrix V from
the previous part of the problem, and let

Ĝ(W ) :=
1

n

n∑
i=1

−`′(yif(xi;W )).

Show that there exists c′ > 0, independent of α, such that for any t ≥ 0,

Ht+1 −Ht ≥ c′αĜ(W (t)).

Hint: use that ` is Lipschitz and decreasing.

4. Let Ft := ‖W (t)‖F . Show that F 2
t+1 ≤ F 2

t + 2α+ α2 for any t ≥ 0.

Hint: use that φ is 1-homogeneous.

5. Use the above to conclude that for any ε > 0, there exists a finite T = T (ε,m, γ, α) for which
Ĝ(W (T )) ≤ ε.
Hint: Consider how quickly the quantity H2

t := 〈W (t), V 〉2 grows as t increases, and use Cauchy–
Schwarz.

6. Use this to conclude that for any ε > 0, there exists a finite T = T (ε,m, γ, α) for which L̂(W (T )) ≤
ε. What are the conditions on α under which this result holds?

Problem 2

Let (xi, yi) ∈ Rd × {±1} for i = 1, . . . , n; call S = {(xi, yi)}ni=1. Let R2
min := mini ‖xi‖2 and R2

max :=
maxi ‖xi‖2 and R2 := R2

max/R
2
min, and assume Rmin > 0. Let us call the training dataset p-orthogonal if,

R2
min ≥ pR2nmax

i 6=j
|〈xi, xj〉|.

In particular, if the examples xi are exactly orthogonal, then S is p-orthogonal for every p > 0.
Recall the definition of the `2-max margin solution (MM) and the `2-minimum norm interpolator (MNI)

wMM := argmin{‖w‖22 : w ∈ Rd, yi〈w, xi〉 ≥ 1 for all i = 1, . . . , n},
wMNI := argmin{‖w‖22 : w ∈ Rd, 〈w, xi〉 = yi for all i = 1, . . . , n}.

1. Suppose that xi
i.i.d.∼ N(0, Id). For δ ∈ (0, 1/2), state sufficient conditions under which we can

guarantee that the training dataset S is p-orthogonal with probability at least 1− δ.

Hint: First show upper and lower bounds on the norm squared of the Gaussian, i.e. find a, b (depend-
ing on δ) such that w.p. at least 1− δ, ‖xi‖2 ∈ [a, b] for all i. Then consider a fixed i ∈ [n], condition
on xi, and use the definition of the Gaussian to bound 〈xi, xj〉 for each j = 1, . . . , n with j 6= i. Then
take a union bound over all i.

2. Show that if S is p-orthogonal for some p ≥ 3, then wMM exists and wMM = wMNI. What does this
imply about training on the logistic loss vs. training on the squared loss when the training data is
p-orthogonal?
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3. Show that there exist training datasets S for which wMNI 6= wMM.

4. Show that if S is p-orthogonal for some p ≥ 3, then there exist si > 0 such that wMM =
∑n

i=1 siyixi

and the si satisfy maxi,j si/sj ≤ R2
(

1 + 1
Ω(pR2)

)
. In particular, if p is large and the norms of

the examples are close to each other, the max-margin classifier is approximately proportional to the
uniform average of the training data,

∑n
i=1 yixi.

Problem 3

Let us again consider the training of a two-layer leaky ReLU network f(x;W ) by gradient descent on the
logistic loss training only the first-layer weights (the setting of Problem 1). We shall show a partial result
concerning the implicit bias of gradient descent towards rank minimization in neural networks when the
training data is p-orthogonal. Towards this end, for a matrix M ∈ Rm×d, let us recall the definition of the
Frobenius norm and spectral norm:

‖M‖2F :=
∑
i,j

([M ]i,j)
2, ‖M‖2 := sup

‖v‖2=1
‖Mv‖2.

We define the stable rank of M as

StableRank(M) :=
‖M‖2F
‖M‖22

.

The stable rank is a continuous version of the rank of a matrix. Consider, e.g., M ∈ Rd×d with M =
diag(1, . . . , 1, ε) for ε ∈ [0, 1]. For any ε > 0, the rank of M is d, while for ε = 0 the rank abruptly
changes to d − 1. On the other hand, StableRank(M) smoothly changes from d − 1 to d as ε goes from 0
to 1. Similarly, if M = diag(1, exp(−d), . . . , exp(−d)), then the rank of M is equal to d for all d, while
StableRank(M) = 1 + (d− 1) exp(−2d) = 1 + od(1).

1. Suppose that [W (0)]i,j
i.i.d.∼ N(0, σ2) for some σ > 0. A classical result in random matrix theory states

the following.1 For some c > 0 and for any t ≥ 0,

P(σ−1‖W (0)‖2 ≥
√
m+

√
d+ t) ≤ 2 exp(−ct2).

Use this to show that with probability at least 1− od(1), StableRank(W (0)) ≥ Ω(min(m, d)).

2. Suppose that the training data is p-orthogonal, and consider W (1) = W (0) − α∇L̂(W (0)) as in

Problem 1, where [W (0)]i,j
i.i.d.∼ N(0, σ2). Show that if p is sufficiently large, then there exists some

α, ᾱ > 0, σ̄ > 0, such that for α ≤ α ≤ ᾱ and 0 < σ ≤ σ̄, it holds that StableRank(W (1)) ≤ C for
some universal constant C which is independent of m and d. In particular, gradient descent reduces
the stable rank of the weight matrix from order Ω(min(m, d)) to constant order in one step.

Hint 1: You need to prove an upper bound on ‖W (1)‖2F and a lower bound on ‖W (1)‖22, and show
they are within a constant of one another. The proof of both bounds should explicitly use the fact that
the training data is p-orthogonal; you may find some of the proof ideas from Problem 1 helpful.

Hint 2: By taking σ sufficiently small, the approximation W (1) ≈ −α∇L̂(W (0)) holds; see what
happens if you treat this as an equality.

1See, e.g., Corollary 7.3.3 of Vershynin’s High-Dimensional Probability.
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3. Consider training a two-layer leaky ReLU network, with biases, on the cross-entropy loss with γ =
0.05 and m = 150 neurons for the MNIST classification task. (Unlike in Problem 1 and the above
subproblem, we are now considering training on both layers and with bias terms.) Initialize the
network with i.i.d. mean zero Gaussians with standard deviation σ = 0.02. Find a suitable learning
rate such that you can produce a network which achieves less than 5% training error within 20 minutes
of training on your laptop/Google Colab; call W (T ) the weights found at the end. Now examine what
happens when you train with the same learning rate and for the same number of steps T as you vary
σ so that σ ∈ {0.0002, 0.002, 0.02, 0.2, 2}.
Produce a plot with the following characteristics:

• σ on the x-axis,

• For each t ∈ {1, T/10, T/5, T/2, T}, have a curve with values StableRank(W (t))

StableRank(W (0))
as a func-

tion of σ, i.e. the relative rank of the weights at time t vs. at time 0. In particular, there
should be 5 separate curves, with different colors and line styles, for each of the times t ∈
{1, T/10, T/5, T/2, T}, so each curve corresponds to the relative rank decrease as a function of
the number of gradient descent steps. Are there any noteworthy findings?
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