UC Davis, STA 250
Homework 1
Instructor: Spencer Frei

Version 1.1, released Friday, February 2, 2024 (added hint to Problem 2.1)

Problem 1

In this problem, we consider a two-layer leaky ReLU network trained by gradient descent on the first-
layer weights. Let m € N, ¢(t) = max(t,vt) for v € (0,1], let W € R™*? have rows w]—-r, and let
aj € {£1/y/m} (the a; can take arbitrary values in this set). Consider

m
fla; W) =" a;é((wj, x)).
j=1
Let us assume that (z;,7;) € R? x {41} are such that ||2;|| < 1 for each i, and there exists v € R? such

that y; (v, z;) > 1 for all 7. Let
~ 1 &
L(W) =~ > Uyif (wis W)).
i=1
Let o > 0 be a step size, and consider gradient descent on the logistic loss £(t) = log(1 + exp(—t)),
WD — w® — oL (w®),

In this problem, we will show that although E(W) is not smooth, we can still show convergence of gradient
descent using what is known as a “Perceptron-style” proof. This is so-named because of its similarity to the
proof of convergence of the Perceptron algorithm for learning halfspaces with linear classifiers (see, e.g.,
Theorem 9.1 of Shalev-Shwartz and Ben-David’s book.)

1. Show that E(W) is not necessarily S-smooth.

2. Show that there exists V € R™*9 satisfying ||V|r = 1 and ¢ > 0 such that for any training point
(z;,v;) and for any W € R"™*4 we have

yi(Vf(zi; W), V) > c.

Hint: it suffices to take a matrix V where every row is a multiple of a single vector.



3. Let H; := <W(t), V') be the correlation between the weights found by G.D. and the matrix V' from
the previous part of the problem, and let

G(W) := —0 (i f (25 W)).
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Show that there exists ¢’ > 0, independent of «, such that for any ¢ > 0,
Ht+1 — Ht Z c’a@(W(t)).
Hint: use that { is Lipschitz and decreasing.

4. Let Fy := |W®||p. Show that F2, < F? + 2a + o? for any ¢ > 0.

Hint: use that ¢ is 1-homogeneous.

5. Use the above to conclude that for any e > 0, there exists a finite 7' = T'(e, m,~y, ) for which
GWD) <e.

Hint: Consider how quickly the quantity H? := (W(t), V)2 grows as t increases, and use Cauchy—
Schwarz.
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6. Use this to conclude that for any ¢ > 0, there exists a finite 7' = T'(e, m, v, ) for which E(W(T))
€. What are the conditions on « under which this result holds?

Problem 2

Let (x;,y;) € R4 x {£1}fori =1,...,n;call S = {(z;,9:)},. Let R2. := min,; ||z;||? and R2,,, =

min max

max; ||z;]|? and R? := R2,,/R2. , and assume Rpin > 0. Let us call the training dataset p-orthogonal if,

Ryin = pR*nmax [(z;, ;)|
i#]
In particular, if the examples x; are exactly orthogonal, then S is p-orthogonal for every p > 0.
Recall the definition of the 5-max margin solution (MM) and the £5-minimum norm interpolator (MNI)

wym = argmin{||w||3 : w € RY, y;(w, x;) > 1foralli =1,...,n},

wyni = argmin{||wl|3 : w € RY, (w, ;) = yiforalli =1,...,n}.
1. Suppose that x; b N(0, ;). For 6 € (0,1/2), state sufficient conditions under which we can
guarantee that the training dataset S is p-orthogonal with probability at least 1 — 6.

Hint: First show upper and lower bounds on the norm squared of the Gaussian, i.e. find a,b (depend-
ing on ) such that w.p. at least 1 — 9, ||z;||? € [a, b] for all i. Then consider a fixed i € [n), condition
on x;, and use the definition of the Gaussian to bound (x;, x;) for each j = 1,... ,n with j # i. Then
take a union bound over all i.

2. Show that if S is p-orthogonal for some p > 3, then wpm exists and wpypm = wmni. What does this
imply about training on the logistic loss vs. training on the squared loss when the training data is
p-orthogonal?



3. Show that there exist training datasets S for which wyn # wWmm-

4. Show that if .S is p-orthogonal for some p > 3, then there exist s; > 0 such that wyp = Z?:l SiYixi

and the s; satisfy max; ; sifs; < R? (1 + W). In particular, if p is large and the norms of

the examples are close to each other, the max-margin classifier is approximately proportional to the
uniform average of the training data, Y ;" | ;2;.

Problem 3

Let us again consider the training of a two-layer leaky ReLU network f(z; W) by gradient descent on the
logistic loss training only the first-layer weights (the setting of Problem 1). We shall show a partial result
concerning the implicit bias of gradient descent towards rank minimization in neural networks when the
training data is p-orthogonal. Towards this end, for a matrix M € R™*< let us recall the definition of the
Frobenius norm and spectral norm:

IMIE =D (M), [M]2:= sup |[Mollz.

5 [lv]l2=1
We define the stable rank of M as I ”2
M
StableRank(M) := L
M]3

The stable rank is a continuous version of the rank of a matrix. Consider, e.g., M € R4 with M =

diag(1,...,1,e) for e € [0,1]. For any ¢ > 0, the rank of M is d, while for ¢ = 0 the rank abruptly

changes to d — 1. On the other hand, StableRank (/) smoothly changes from d — 1 to d as € goes from 0

to 1. Similarly, if M = diag(1, exp(—d),...,exp(—d)), then the rank of M is equal to d for all d, while
StableRank(M) =1+ (d — 1) exp(—2d) = 1 + 04(1).

1. Suppose that [ ()], ; N (0, 02) for some o > 0. A classical result in random matrix theory states
the following.! For some ¢ > 0 and for any ¢ > 0,

Plo Y WO 2 > vm + Vd +t) < 2exp(—ct?).
Use this to show that with probability at least 1 — 04(1), StableRank(W () > Q(min(m, d)).

2. Suppose that the training data is p-orthogonal, and consider W) = W) — an(W(O)) as in
Problem 1, where [IW(%)]; ; bigt N(0,c2). Show that if p is sufficiently large, then there exists some
a,a > 0,5 > 0, such that for o < o < @and 0 < ¢ < 7, it holds that StabIeRank(W(l)) < C for
some universal constant C' which is independent of m and d. In particular, gradient descent reduces

the stable rank of the weight matrix from order Q(min(m, d)) to constant order in one step.

Hint 1: You need to prove an upper bound on ||W ™M ||% and a lower bound on ||W™")|3, and show
they are within a constant of one another. The proof of both bounds should explicitly use the fact that
the training data is p-orthogonal; you may find some of the proof ideas from Problem 1 helpful.

Hint 2: By taking o sufficiently small, the approximation W) ~ —an(W(O)) holds; see what
happens if you treat this as an equality.

'See, e.g., Corollary 7.3.3 of Vershynin’s High-Dimensional Probability.



3. Consider training a two-layer leaky ReL.U network, with biases, on the cross-entropy loss with v =
0.05 and m = 150 neurons for the MNIST classification task. (Unlike in Problem 1 and the above
subproblem, we are now considering training on both layers and with bias terms.) Initialize the
network with i.i.d. mean zero Gaussians with standard deviation o = 0.02. Find a suitable learning
rate such that you can produce a network which achieves less than 5% training error within 20 minutes
of training on your laptop/Google Colab; call W (7) the weights found at the end. Now examine what
happens when you train with the same learning rate and for the same number of steps 7" as you vary
o so that o € {0.0002,0.002,0.02,0.2,2}.

Produce a plot with the following characteristics:

e o on the x-axis,

» For each t € {1,7/10,7/5,7/2,T}, have a curve with values %m as a func-

tion of o, i.e. the relative rank of the weights at time ¢ vs. at time 0. In particular, there
should be 5 separate curves, with different colors and line styles, for each of the times ¢ €
{1,7/10,T/5,T/2,T}, so each curve corresponds to the relative rank decrease as a function of
the number of gradient descent steps. Are there any noteworthy findings?



