
STA035B Homework 2, due: 2/1, 9pm

Spencer Frei

Instructions
Upload a PDF file, named with your UC Davis email ID and homework number (e.g., sfrei_hw2.pdf), to
Gradescope (accessible through Canvas). You will give the commands to answer each question in its own
code block, which will also produce output that will be automatically embedded in the output file. All code
used to answer the question must be supplied, as well as written statements where appropriate.

All code used to produce your results must be shown in your PDF file (e.g., do not use echo = FALSE or
include = FALSE as options anywhere). Rmd files do not need to be submitted, but may be requested by
the TA and must be available when the assignment is submitted.

Students may choose to collaborate with each other on the homework, but must clearly indicate with whom
they collaborated.

1

Problem 1

library(nycflights13)

Consider the weather dataset (comes when you load nycflights13 library), which has columns: “origin”,
“year”, “month”, “day”, “hour”, “temp”, “dewp”, “humid”, “wind_dir”, “wind_speed”, “wind_gust”, “precip”,
“pressure”, “visib”, and “time_hour”. We show the first few rows and columns below.
weather

A tibble: 26,115 x 15
origin year month day hour temp dewp humid wind_dir wind_speed
<chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>

1 EWR 2013 1 1 1 39.0 26.1 59.4 270 10.4
2 EWR 2013 1 1 2 39.0 27.0 61.6 250 8.06
3 EWR 2013 1 1 3 39.0 28.0 64.4 240 11.5
4 EWR 2013 1 1 4 39.9 28.0 62.2 250 12.7
5 EWR 2013 1 1 5 39.0 28.0 64.4 260 12.7

...

(a) Provide code which computes the average total precipitation per origin per month, removing any missing
values. That is, you should have for every origin and month pair, the average (across all years in the
tibble) amount of precipitation received at that origin in that month. (i.e., we should be able to answer:
In a given July at Newark airport, what is the typical total precipitation?) Then filter the resulting
tibble so that only those origin-month pairs with the 5 highest average precipitation remain.

Hint: You should first compute what the total precipitation per origin, year, and month is. You now have a
tibble which records the total precipitation per origin-month pair for every year; now average across all of the
years for which you have observations in that month for the origin.

Answer: if there were multiple years in the tibble, the following code would be the correct way to do it:
weather %>%

group_by(origin, month, year) %>%
mutate(total_precip = sum(precip, na.rm=TRUE)) %>%
group_by(origin, month) %>%
summarize(avg_precip = mean(total_precip, na.rm=TRUE)) %>%
arrange(by = desc(avg_precip)) %>%
head(5)

`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.

A tibble: 5 x 3
Groups: origin [3]

origin month avg_precip
<chr> <int> <dbl>

1 EWR 6 8.73
2 LGA 6 8.16
3 JFK 6 7.95
4 EWR 5 5.44
5 LGA 5 4.99

Since there is only one year in the tibble, this is equivalent to the following code:
weather %>%

group_by(origin, month) %>%
mutate(total_precip = sum(precip, na.rm=TRUE)) %>%
summarize(avg_precip = mean(total_precip, na.rm=TRUE)) %>%

2

arrange(by = desc(avg_precip)) %>%
head(5)

`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.

A tibble: 5 x 3
Groups: origin [3]

origin month avg_precip
<chr> <int> <dbl>

1 EWR 6 8.73
2 LGA 6 8.16
3 JFK 6 7.95
4 EWR 5 5.44
5 LGA 5 4.99

(b) Do a similar calculation: compute the average total precipitation per origin per week number (i.e.,
Jan 1 - Jan 7 is week 1, Jan 8 - 15 is week 2, etc.) removing any missing values. Then filter the resulting
tibble so that only those origin-month pairs with the 5 highest average precipitation remain. Note that
weather does not have a week number so you need to create this yourself—think of what mathematical
operations allow for you to find the week number, and look back at the slides on dates/times.

Hint: similar to the previous part of the problem, you need to calculate the total precipitation per each week
for every origin and year. Then average over different years.

Answer: same as before, if there were > 1 year in the tibble, this would be the correct code:
weather %>%

mutate(weeknum = yday(time_hour) %/% 7 + 1) %>%
group_by(origin, weeknum, year) %>%
mutate(total_precip = sum(precip, na.rm=TRUE)) %>%
group_by(origin, weeknum) %>%
summarize(avg_precip = mean(total_precip, na.rm=TRUE)) %>%
arrange(by = desc(avg_precip)) %>%
head(5)

`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.

A tibble: 5 x 3
Groups: origin [3]

origin weeknum avg_precip
<chr> <dbl> <dbl>

1 LGA 23 5.25
2 JFK 23 4.79
3 EWR 23 4.5
4 EWR 19 3.55
5 LGA 19 3.31

Since there is only one year, the following code is equivalent:
weather %>%

mutate(weeknum = yday(time_hour) %/% 7 + 1) %>%
group_by(origin, weeknum) %>%
mutate(total_precip = sum(precip, na.rm=TRUE)) %>%
summarize(avg_precip = mean(total_precip, na.rm=TRUE)) %>%
arrange(by = desc(avg_precip)) %>%
head(5)

3

`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.

A tibble: 5 x 3
Groups: origin [3]

origin weeknum avg_precip
<chr> <dbl> <dbl>

1 LGA 23 5.25
2 JFK 23 4.79
3 EWR 23 4.5
4 EWR 19 3.55
5 LGA 19 3.31

4

Problem 2

• Suppose we have a tibble of the following form:
df <- tribble(

~name, ~date_of_birth, ~favorite_food,
"Will", "1995-09-01", "Tacos",
"Angela", "1993-01-02", "Sushi",
"Ana", "1994-11-20", "Italian"

)

(a) Provide R code which adds the following columns:

• year, a number, indicating the year of birth
• month, a string, the month (fully spelled out, i.e. January) of birth
• day, a number, indicating the day of the month the person was born

The resulting tibble should have 6 columns, the 3 original ones plus these 3 new ones.
df %>%

mutate(parsed_date = as_datetime(date_of_birth),
year = year(parsed_date),
month = month(parsed_date),
day = day(parsed_date)) %>%

select(-parsed_date)

A tibble: 3 x 6
name date_of_birth favorite_food year month day
<chr> <chr> <chr> <dbl> <dbl> <int>

1 Will 1995-09-01 Tacos 1995 9 1
2 Angela 1993-01-02 Sushi 1993 1 2
3 Ana 1994-11-20 Italian 1994 11 20

(b) Provide R code which adds the following column:

• ten_years_later: a date time, indicating a the date corresponding to ten years after the person’s birth

The resulting tibble should have 4 columns, the original 3 plus this new one.
df %>%

mutate(parsed_date = as_datetime(date_of_birth),
ten_years_later = parsed_date + years(10))

A tibble: 3 x 5
name date_of_birth favorite_food parsed_date ten_years_later
<chr> <chr> <chr> <dttm> <dttm>

1 Will 1995-09-01 Tacos 1995-09-01 00:00:00 2005-09-01 00:00:00
2 Angela 1993-01-02 Sushi 1993-01-02 00:00:00 2003-01-02 00:00:00
3 Ana 1994-11-20 Italian 1994-11-20 00:00:00 2004-11-20 00:00:00

(c) Provide R code which adds the following column:

• obama_age_when_born: an integer, indicating how many years old Barack Obama (born August 4,
1961) was when the person was born.

– Be sure it is an integer and there are no decimal places!
– The resulting tibble should have 4 columns, the original 3 plus this new one. No extra columns!

df %>%
mutate(parsed_date = as_datetime(date_of_birth),

obama_age_when_born_decimals = (as_date("1961-08-04") %--% parsed_date) / years(1),
obama_age_when_born = floor(obama_age_when_born_decimals)

5

) %>%
select(-parsed_date, -obama_age_when_born_decimals)

A tibble: 3 x 4
name date_of_birth favorite_food obama_age_when_born
<chr> <chr> <chr> <dbl>

1 Will 1995-09-01 Tacos 34
2 Angela 1993-01-02 Sushi 31
3 Ana 1994-11-20 Italian 33

6

Problem 3

• Suppose we have the following tibble:
entered_data <- tribble(

~id, ~entry,
0, "Arthur_1985-09-01_Present",
1, "Zack_1983-01-02_Absent",
2, "Pat_1984-11-20_Present",

)

Provide R code which parses the entry column and creates three new columns:

• name, a string, indicating the person’s name (preceding the first underscore),
• date_of_birth, a date time indicating the person’s date of birth,
• day_can_vote, a date time indicating the day when the person is 18 years old.

The resulting tibble should have 5 columns: id and entry in addition to these 3 new columns.
entered_data %>%

mutate(name = str_replace(entry, "(.*)_(.*)_(.*)", "\\1"),
date_of_birth = as_datetime(str_replace(entry, "(.*)_(.*)_(.*)", "\\2"))

) %>%
mutate(day_can_vote = date_of_birth + years(18))

A tibble: 3 x 5
id entry name date_of_birth day_can_vote

<dbl> <chr> <chr> <dttm> <dttm>
1 0 Arthur_1985-09-01_Present Arthur 1985-09-01 00:00:00 2003-09-01 00:00:00
2 1 Zack_1983-01-02_Absent Zack 1983-01-02 00:00:00 2001-01-02 00:00:00
3 2 Pat_1984-11-20_Present Pat 1984-11-20 00:00:00 2002-11-20 00:00:00
entered_data %>%

separate_wider_regex(
entry,
patterns = c(

name = ".*",
"_",
date_of_birth = ".*",
"_.*"

)
) %>%
mutate(date_of_birth = as_datetime(date_of_birth),

day_can_vote = date_of_birth + years(18))

A tibble: 3 x 4
id name date_of_birth day_can_vote

<dbl> <chr> <dttm> <dttm>
1 0 Arthur 1985-09-01 00:00:00 2003-09-01 00:00:00
2 1 Zack 1983-01-02 00:00:00 2001-01-02 00:00:00
3 2 Pat 1984-11-20 00:00:00 2002-11-20 00:00:00

7

	Instructions
	Problem 1
	Problem 2
	Problem 3

