
Instructions
Upload a PDF file, named with your UC Davis email ID and homework number (e.g., sfrei_hw4.pdf), to
Gradescope (accessible through Canvas). You will give the commands to answer each question in its own
code block, which will also produce output that will be automatically embedded in the output file. All code
used to answer the question must be supplied, as well as written statements where appropriate.

All code used to produce your results must be shown in your PDF file (e.g., do not use echo = FALSE or
include = FALSE as options anywhere). Rmd files do not need to be submitted, but may be requested by
the TA and must be available when the assignment is submitted.

Students may choose to collaborate with each other on the homework, but must clearly indicate with whom
they collaborated.

1

Problem 1: [IMS] 12.6
1. Bootstrap distributions of p̂, III. Each of the following four distributions was created using a

different dataset. Each dataset had the same proportion of successes (p̂ = 0.4) but a different sample
size. The four datasets were given by n = 10, 100, 500, and 1000.

Consider each of the following values for the true popluation p (proportion of success). Datasets A, B, C, D
were bootstrapped 1000 times, with bootstrap proportions as given in the histograms provided. For each
parameter value, list the datasets which could plausibly have come from that population. (Hint: there may
be more than one dataset for each parameter value.)

a. p = 0.05

b. p = 0.25

c. p = 0.45

d. p = 0.55

e. p = 0.75

2

Problem 2
In this problem we work through how to do a randomization test in R. We will work with the following
example dataset.
df <- tibble(

group = rep(c("control", "treatment"), each=50), # 50 control and 50 treatment observations
response = factor(c(rep("success", 20), rep("failure", 30),

rep("success", 29), rep("failure", 21)),
levels = c("success", "failure"))

)

Part (a) - computing sample proportion

Write a function compute_proportions which takes in the argument tib, a tibble, which we assume takes
the form of the above tibble (i.e., it has two columns, “group” and “response”, where “group” is a factor
which takes values “control” and “treatment” while “response” is a factor which takes values “success” and
“failure”.)

The function compute_proportions returns a tibble with two variables, “group” and “proportion”. Each
row of the returned table corresponds to the proportion of “success” within each group of “control” and
“treatment”.
code here

3

Part (b) - generating random treatment/control vectors

Write a function randomized_treatment which takes as its argument tib, a tibble in the same format
as the previous part of the problem, and returns a tibble where the treatments and controls are assigned
randomly. *Hint: the function sample() in R should be helpful. Examine what this function does to a vector
of categorical variables. What happens when you repeatedly apply this function to the same tibble (e.g., the
tibble df in the introduction to the problem?)
code here

4

Part (c) - randomization test

Write a function randomization_tests which takes two arguments: tib, a tibble, and n, an integer with
default value of 500. Assume tib has the same form as in the previous problem. It returns a named list,
with one component, actual_diff, which returns the difference in proportion of successes in treatment
vs. proportion of successes in control (this difference is positive if there are more successes in treatment). The
second component of the named list, randomized_differences, is a vector of length n which computes the
difference in proportions between treatment and control when the treatment and control groups are assigned
randomly, using the randomized_treatment() function from the previous part of the problem.

You may wish to first initialize a vector differences, and to use a for loop - see below. Recall that if you
want to set the i-th component of the vector differences to be e.g. 3, you can write differences[i] <- 3.
randomization_tests <- function(tib, n = 500) {

set.seed(123) # For reproducibility
differences <- numeric(n)

code here
for(i in 1:n) {

code here
}

code here
}

5

Part (d) - plotting the results

Write a function, plot_randomization_results, which takes as its argument a named list randomization_results
which has the same format as the output of the previous part of the problem (i.e., a component “actual_diff”
and a component “differences”), and returns a histogram with binwidth 0.005 of the values of the differences
that come from using n = 1000 randomization tests. In addition, plot a dashed red line which denotes
the actual difference observed in the original data. Make sure the x-axis, y-axis, and title of the plot are
descriptive, and that the x-axis and y-axis labels are visible.
code here

6

Part (e) - analysis of how extreme events are

Write a function percent_more_extreme(), which takes as its input randomization_results (a named list
which is the output of the function randomization_tests from part (b)) and returns the proportion of the
simulated differences-in-proportions in randomizations which have as extreme as a result as the observed
difference in the data. For example:

• If the original data had difference in proportions of 0.03, and randomizations had difference in proportions
of -0.02, 0.01, 0.04, 0.05, and 0.07, then the function would return 0.6 = 3/5 since 0.04, 0.05, and 0.07
were more extreme (positive) than the observed difference of 0.03.

• If the original data had difference in proportions of -0.01, and randomizations had difference in
proportions of -0.02, 0.01, 0.04, 0.05, and 0.07, then the function would return 0.2 = 1/5 since only
-0.02 was more extreme (negative) than the observed difference of -0.01.

For this problem you can assume that the observed differences in the data is not zero. Be sure that the reader
can read every line of your code in the PDF!
code here

7

Part (f) - running the analysis and interpreting

Now run the code that you’ve built up as follows: (remember to remove the eval=FALSE when you are
knitting your own Rmd)
randomization_results <- randomization_tests(df)
plot_randomization_results(randomization_results)
percent_more_extreme(randomization_results)

Interpret the graph and the results of the function percent_more_extreme. How likely was it that the
treatment is independent of success/failure?

8

	Instructions
	Problem 1: [IMS] 12.6
	Problem 2
	Part (a) - computing sample proportion
	Part (b) - generating random treatment/control vectors
	Part (c) - randomization test
	Part (d) - plotting the results
	Part (e) - analysis of how extreme events are
	Part (f) - running the analysis and interpreting

