STA035B Midterm 1, Winter 2024

Name \qquad
Student ID

problem	points
1 a	
1 b	
2 a	
2 b	
2 c	
2	
3	
4 a	
4 b	
total	

Problem 1

Consider the following code.

```
scores <- tribble(
    ~name, ~midterm1, ~midterm2,
    "Mary", 80, 90,
    "Jose", NA, 100,
    "Ali", 75, 95,
)
cleaned_scores <- scores %>%
    mutate(
        midterm1 = replace_na(midterm1, 100),
        midterm2 = replace_na(midterm2, 100)
)
```

For each of the following, draw the tibble which results from the following code. With words, describe how many rows and columns there are in the resulting tibble, and say whether or not there are missing values and, if there are any, where they appear in the tibble.
(a) 5 points:
scores \%>\%

```
    mutate(a = pmin(midterm1, midterm2))
```

\# A tibble: 3×4
name midterm1 midterm2 a
<chr> <dbl> <dbl> <dbl>
1 Mary $80 \quad 90 \quad 80$
2 Jose NA 100 NA

3 Ali	75	95	75

The tibble has 3 rows and 4 columns. The row for Jose has missing values for midterm1 and a, and these are the only missing values.
(b) 5 points:

```
cleaned_scores %>%
    mutate(c = pmin(midterm1, midterm2))
# A tibble: 3 x 4
    name midterm1 midterm2 c
    <chr> <dbl> <dbl> <dbl>
1 Mary }80\quad9
2 Jose 100 100 100
3 Ali 
```

The tibble has 3 rows and 4 columns. There are no missing values.

Problem 2

Suppose we have a tibble flights whose first few rows look like this:

time_hour	carrier	flight	tailnum	origin	dest	air_time
$2013-01-0105: 00: 00$	UA	1545	N14228	EWR	IAH	227
$2013-01-0105: 00: 00$	UA	1714	N24211	LGA	IAH	227
$2013-01-0105: 00: 00$	AA	1141	N619AA	JFK	MIA	160
$2013-01-0105: 00: 00$	DL	725	N804JB	JFK	BQN	183
$2013-01-0106: 00: 00$	DL	461	N668DN	LGA	ATL	116
$2013-01-0105: 00: 00$	UA	1696	N39463	EWR	ORD	150

Describe the outputs of the following lines of code.
(a) 5 points:
flights \% \% \%
group_by(origin) \%>\%
summarize($n=n())$
\# A tibble: 3 x 2
origin n
<chr> <int>
1 EWR 120835
2 JFK 111279
3 LGA 104662
This is valid code. It computes the number of flights per origin: it returns a tibble with two columns, one with origin and another with n.
(b) 5 points:
str_remove(flights\$dest, '^[AEIOU]')
This is valid code. It returns the vector of strings with values given by the dest variable in flights, except that if dest begins with a capital vowel, then it removes the first letter of dest.

Problem 3 (3 points)

Consider the following tibbles:

```
df1 <- tribble(
    ~product, ~q1, ~q2,
    "A", 150, 200,
    "B", 120, 180
)
df2 <- tribble(
    ~product, ~quarter, ~sales,
    "A", "q1", 150,
    "A", "q2", 200,
    "B", "q1", 120,
    "B", "q2", 180
)
```

Which of the following code correctly transforms df2 into df1?
(A) df2 \%>\% pivot_wider(id_cols = c(product, quarter), names_from = quarter, values_from = sales)
(B) df2 \%>\% pivot_wider (id_cols = product, names_from = quarter, values_from = sales)
(C) df2 \% >\% pivot_wider (id_cols = c(product, quarter), names_from = sales, values_from = quarter)
(D) df2 \%>\% pivot_wider(id_cols = quarter, names_from = product, values_from = sales)
(B) is the correct answer

Problem 4 (5 points)

Consider the following vector of strings.

```
strings <- c("William;Order 1", "Jenny;order 2", "Alex;order 25")
```

Suppose we want to use regex to return the strings vector but where we erase the name preceding the semicolon and delete the semicolon. Which of the following options correctly does this task? Explain. (If you get the answer correct, you don't need an explanation. If you get it incorrect, any explanations for why some of the options are incorrect can get you partial points.)
(A) str_remove(strings, " $\ \backslash \mathrm{lb+} ; ")$
(B) str_remove(strings, " $\ \backslash$ +w+;")
(C) str_remove(strings, "\$[a-z]*;")
(D) str_remove(strings, "\$[A-Za-z]+;")

(B) is the correct answer.

The first line is not valid code, $\backslash \backslash \mathrm{b}$ must appear twice to enclose something. The third and fourth options don't do anything since we are starting with " $\$$ " which indicates the end of a string, thus no parts of the string ar ematched.

Problem 5

Consider the two following tibbles:

```
majors <- tribble(
    ~student_id, ~major,
    123, "Math",
    234, "Statistics",
    345, "Literature",
)
grades <- tribble(
    ~student_id, ~course, ~grade,
    345, "Machiavelli", "B",
    123, "Analysis", "A",
    456, "Organic Chemistry", "C"
)
```

For each of the following, draw the tibble which results from the following code. With words, describe how many rows and columns there are in the resulting tibble, and describe any missing values.
(a) 5 points:

```
majors %>% left_join(grades)
Joining with `by = join_by(student_id)`
# A tibble: 3 x 4
    student_id major course grade
        <dbl> <chr> <chr> <chr>
        1 2 3 \text { Math Analysis A}
        2 3 4 \text { Statistics <NA> <NA>}
        345 Literature Machiavelli B
```

There are 3 rows, 4 columns. There are missing values for student_id = 234 for course and grade.
(b) 5 points:

```
grades %>% left_join(majors)
Joining with `by = join_by(student_id)`
# A tibble: 3 x 4
    student_id course grade major
        <dbl> <chr> <chr> <chr>
        345 Machiavelli B Literature
        123 Analysis A Math
        456 Organic Chemistry C <NA>
```

There are 3 rows, 4 columns. There are missing values for student_id = 456 for major.

